Difference between revisions of "Fundamental Interactions"

Line 86: Line 86:
 
__NOEDITSECTION__
 
__NOEDITSECTION__
   
  +
* [[Fundamental_Interactions_Preprints Our preprints in the field of fundamental interactions]]
<!--
 
 
----
 
 
== Preprints ==
 
 
Preprints of the group '''Fundamental Interactions''':
 
 
=== Current year ===
 
 
-->
 
 
<!--
 
* <b>TUW-16-01</b> N.N. and A.U. Thor, ''Title of next TUW preprint'' [http://arxiv.org/abs/160y.xxxxx 160y.xxxxx]
 
-->
 
 
<!--
 
 
* <b>TUW-16-01</b> P. Anastasopoulos, M. Bianchi ''Revisiting light stringy states in view of the 750 GeV diphoton excess'' [http://arxiv.org/abs/1601.07584 1601.07584]
 
 
* <b>TUW-16-02</b> E. Hatefi, ''On D-brane-Anti D-brane Effective actions and their all order Bulk Singularity Structures'' [http://arxiv.org/abs/1601.06667 1601.06667]
 
 
* <b>TUW-16-03</b> R. Kallosh, A. Linde, T. Wrase ''Coupling the Inflationary Sector to Matter'' [http://arxiv.org/abs/1602.07818 1602.07818]
 
 
* <b>TUW-16-04</b> J. Knapp, M. Romo and E. Scheidegger, ''Hemisphere Partition Function and Analytic Continuation to the Conifold Point'' [http://arxiv.org/abs/1602.01382 1602.01382]
 
 
* <b>TUW-16-05</b> S. Ferrara, R. Kallosh, A. Van Proeyen and T. Wrase, ''Linear Versus Non-linear Supersymmetry, in General'' [http://arxiv.org/abs/1603.02653 1603.02653]
 
 
* <b>TUW-16-06</b> Hamid Afshar, Stephane Detournay, Daniel Grumiller, Wout Merbis, Alfredo Perez, David Tempo and Ricardo Troncoso, ''Soft Heisenberg hair on black holes in three dimensions'' [http://arxiv.org/abs/1603.04824 1603.04824]
 
 
* <b>TUW-16-07</b> Christian Ecker, Daniel Grumiller, Philipp Stanzer, Stefan Stricker and Wilke van der Schee ''Monitoring shock wave collisions with nonlocal observables'' [http://arxiv.org/abs/1609.03676 1609.03676]
 
 
* <b>TUW-16-08</b> E. Hatefi, ''On SYM theory and all order Bulk Singularity Structures of BPS Strings in type II theory'' [http://arxiv.org/abs/1603.05245 1603.05245]
 
 
* <b>TUW-16-09</b> E. Hatefi, ''On Bulk Singularity Structures and all order α′ Contact Terms of BPS String Amplitudes'' [http://arxiv.org/abs/1604.03514 1604.03514]
 
 
* <b>TUW-16-10</b> B. Vercnocke and T. Wrase, ''Constraint superfields from an anti-D3-brane'' [http://arxiv.org/abs/1605.03961 1605.03961]
 
 
* <b>TUW-16-11</b> R. Kallosh, B. Vercnocke and T. Wrase, ''String Theory Origin of Constrained Multiplets'' [http://arxiv.org/abs/1606.09245 1606.09245]
 
 
* <b>TUW-16-12</b> R. Kallosh, A. Linde, D. Roest and T. Wrase, ''Sneutrino Inflation with $\alpha$-attractors'' [http://arxiv.org/abs/1607.08854 1607.08854]
 
 
* <b>TUW-16-13</b> D. Grumiller, A. Pérez , S. Prohazka, D. Tempo, and R. Troncoso, ''Higher spin black holes with soft hair and their asymptotic structure in 3D'' [http://arxiv.org/abs/1607.05360 1607.05360]
 
 
* <b>TUW-16-14</b> D. Gelfand, A. Ipp, D. Müller, ''Simulating collisions of thick nuclei in the color glass condensate framework'' [http://arxiv.org/abs/1605.07184 1605.07184]
 
 
* <b>TUW-16-15</b> D. Gelfand, F. Hebenstreit, J. Berges, ''Early quark production and approach to chemical equilibrium'' [http://arxiv.org/abs/1601.03576 1601.03576]
 
 
* <b>TUW-16-16</b> D. Grumiller, M. Riegler, ''Most general AdS_3 boundary conditions'' [http://arxiv.org/abs/1608.01308 1608.01308]
 
 
* <b>TUW-16-17</b> D. Grumiller, J. Salzer, D. Vassilevich, ''Aspects of AdS_2 holography with non-constant dilaton'' [http://arxiv.org/abs/1607.06974 1607.06974]
 
 
* <b>TUW-16-18</b> H. Afshar, D. Grumiller, M.M. Sheikh-Jabbari, ''Near Horizon Soft Hairs as Microstates of Three Dimensional Black Holes'' [http://arxiv.org/abs/1607.00009 1607.00009]
 
 
* <b>TUW-16-19</b> E. Hatefi, ''Remarks on Non-BPS String Amplitudes and their all order \alpha' Contact Interactions'' [http://arxiv.org/abs/1609.01385 1609.01385]
 
 
* <b>TUW-16-20</b> P. Anastasopoulos, M. Bianchi, D. Consoli, ''Yukawa's of light stringy states'' [https://arxiv.org/abs/1609.09299 1609.09299]
 
 
* <b>TUW-16-21</b> I. Lodato, W. Merbis ''super-BMS_3 algebras from N=2 flat supergravities'' [https://arxiv.org/abs/1610.07506 1610.07506]
 
 
* <b>TUW-16-22</b> E. Hatefi, ''On WZ and RR Couplings of BPS Branes and their all order Corrections in IIB, IIA'' [http://arxiv.org/abs/1611.abcde 1611.abcde]
 
 
* <b>TUW-16-23</b> H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo, and R. Troncoso, ''Soft hairy horizons in three spacetime dimensions'' [http://arxiv.org/abs/1611.09783 1611.09783]
 
 
* <b>TUW-16-24</b> A. Bagchi, M. Gary, Zodinmawia, ''The BMS Bootstrap'' [http://arxiv.org/abs/1612.xxxx 1612.xxxx]
 
 
 
=== 2015 ===
 
 
* <b>TUW-15-01</b> F. Brünner, D. Parganlija, and A. Rebhan, ''Glueball Decay Rates in the Witten-Sakai-Sugimoto Model'' [http://arxiv.org/abs/1501.07906 1501.07906]
 
 
* <b>TUW-15-02</b> F. Brünner, D. Parganlija, and A. Rebhan, ''Top-down Holographic Glueball Decay Rates'' [http://arxiv.org/abs/1502.00456 1502.00456]
 
 
* <b>TUW-15-03</b> P. Anastasopoulos, R. Richter and A. N. Schellekens, ''Discrete symmetries from hidden sectors'' [http://arxiv.org/abs/1502.02686 1502.02686]
 
 
* <b>TUW-15-04</b> E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, ''anti-D3 and dS'' [http://arxiv.org/abs/1502.07627 1502.07627]
 
 
* <b>TUW-15-05</b> V. Keranen, H. Nishimura, S. Stricker, O. Taanila and A. Vuorinen, ''Gravitational collapse of thin shells: Time evolution of the holographic entanglement entropy'', [http://arxiv.org/abs/1502.01277 1502.01277]
 
 
* <b>TUW-15-06</b> K. Bouchachia, S. Kouadik, M. Hachemane and M. Schweda, ''One loop radiative corrections to the translation-invariant noncommutative Yukawa Theory'', [http://arxiv.org/abs/1502.02992 1502.02992]
 
 
* <b>TUW-15-07</b> H. Balasin, D. N. Blaschke, F. Gieres and M. Schweda, ''On the energy-momentum tensor in Moyal space'', [http://arxiv.org/abs/1502.03765 1502.03765]
 
 
* <b>TUW-15-08</b> R. C. Rashkov and T. Vetsov, ''Holographic mesons in global Pilch-Warner background geometry'' [http://arxiv.org/abs/1502.04493 1502.044930]
 
 
* <b>TUW-15-09</b> A. S. Christensen, J. C. Myers, P. D. Pedersen, and J. Rosseel, ''Calculating the chiral condensate diagrammatically at strong coupling '' [http://arxiv.org/abs/1502.04865 1502.04865]
 
 
* <b>TUW-15-10</b> D. Parganlija, ''Scalar Glueball in a Top-Down Holographic Approach to QCD'', [http://arxiv.org/abs/1503.00550 1503.00550]
 
 
* <b>TUW-15-11</b> F. Brünner and A. Rebhan, ''Nonchiral enhancement of scalar glueball decay in the Witten-Sakai-Sugimoto model'' [http://arxiv.org/abs/1504.05815 1504.05815]
 
 
* <b>TUW-15-12</b> C. Ecker, D. Grumiller and S. Stricker, ''Evolution of holographic entanglement entropy in an anisotropic system'' [http://arxiv.org/abs/1506.02658 1506.02658]
 
 
* <b>TUW-15-13</b> A. Bagchi, D. Grumiller and W. Merbis, ''Stress tensor n-point correlators in three-dimensional gravity'' [http://arxiv.org/abs/1507.05620 1507.05620]
 
 
* <b>TUW-15-14</b> H. Skarke, ''Cosmic Acceleration as an Optical Illusion'' [http://arxiv.org/abs/1508.01510 1508.01510]
 
 
* <b>TUW-15-15</b> R. Kallosh, T. Wrase, ''De Sitter Supergravity Model Building'' [http://arxiv.org/abs/1509.02137 1509.02137]
 
 
* <b>TUW-15-16</b> E. Bergshoeff, J. Rosseel, T. Zojer, ''Newton-Cartan (super)gravity as a non-relativistic limit'' [http://arxiv.org/abs/1505.02095 1505.02095]
 
 
* <b>TUW-15-17</b> E. Bergshoeff, J. Rosseel, T. Zojer, ''Newton-Cartan supergravity with torsion and Schroedinger supergravity'' [http://arxiv.org/abs/1509.04527 1509.04527]
 
 
* <b>TUW-15-18</b> D. Grumiller and W. Merbis, ''Free energy of topologically massive gravity and flat space holography'' [http://arxiv.org/abs/1509.08505 1509.08505]
 
 
* <b>TUW-15-19</b> V. Breunhölder, M. Gary, D. Grumiller and S. Prohazka, ''Null warped AdS in higher spin gravity'' [http://arxiv.org/abs/1509.08487 1509.08487]
 
 
* <b>TUW-15-20</b> D. Grumiller, J. Salzer and D. Vassilevich, ''AdS_2 holography is (non-)trivial for (non-)constant dilaton'' [http://arxiv.org/abs/1509.08486 1509.08486]
 
 
* <b>TUW-15-21</b> M. Schillo, E. van der Woerd and T. Wrase, ''The general de Sitter supergravity component action'' [http://arxiv.org/abs/1511.01542 1511.01542]
 
 
* <b>TUW-15-22</b> H. Afshar, S. Detournay, D. Grumiller and B. Oblak, ''Near-Horizon Geometry and Warped Conformal Symmetry'' [http://arxiv.org/abs/1512.08233 1512.08233]
 
 
* <b>TUW-15-23</b> F. Brünner and A. Rebhan, ''Constraints on the ηη′ decay rate of a scalar glueball from gauge/gravity duality'' [http://arxiv.org/abs/1510.07605 1510.07605]
 
 
* <b>TUW-15-24</b> F. Brünner and A. Rebhan, ''Glueball Decay in the Witten-Sakai-Sugimoto Model and Finite Quark Masses'' [http://arxiv.org/abs/1510.08452 1510.08452]
 
 
* <b>TUW-15-25</b> F. Brünner, D. Parganlija, and A. Rebhan, ''Glueball decay patterns in top-down holographic QCD'' [http://arxiv.org/abs/1511.01391 1511.01391]
 
 
* <b>TUW-15-26</b> A. Mukhopadhyay, F. Preis, A. Rebhan, and A. Rebhan, ''Semi-Holography for Heavy Ion Collisions: Self-Consistency and First Numerical Tests'' [http://arxiv.org/abs/1512.06445 1512.06445]
 
 
* <b>TUW-15-27</b> N. Behr and A. Mukhopadhyay, ''Holography as a highly efficient RG flow II: An explicit construction'' [http://arxiv.org/abs/1512.09055 1512.09055]
 
 
 
* <b>TUW-15-28</b> E.Hatefi, ''On RR Couplings and Bulk Singularity Structures of Non-BPS Branes'' [http://arxiv.org/abs/1511.04971 1511.04971]
 
 
 
=== 2014 ===
 
 
* <b>TUW-14-01</b> M. Gary, D. Grumiller, S. Prohazka, and S.-J. Rey, ''Lifshitz Holography with Isotropic Scale Invariance '' [http://arxiv.org/abs/1406.1468 hep-th/1406.1468]
 
 
* <b>TUW-14-02</b> S. Detournay, D. Grumiller, F. Schöller and J. Simon, ''Variational principle and 1-point functions in 3-dimensional flat space Einstein gravity '' [http://arxiv.org/abs/1402.3687 hep-th/1402.3687]
 
 
* <b>TUW-14-03</b> D. Grumiller, R. McNees and J. Salzer, ''Black holes and thermodynamics - The first half century'' [http://arxiv.org/abs/1402.5127 hep-th/1402.5127]
 
 
* <b>TUW-14-04</b> H. Afshar, T. Creutzig, D. Grumiller, Y. Hikida and P. Ronne, ''Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry'' [http://arxiv.org/abs/1404.0010 1404.0010]
 
 
* <b>TUW-14-05</b> D. Grumiller, M. Riegler and J. Rosseel, ''Unitarity in three-dimensional flat space higher spin theories'' [http://arxiv.org/abs/1403.5297 hep-th/1403.5297]
 
 
* <b>TUW-14-06</b> V. Keranen, H Nishimura, S. Stricker, O. Taanila, A. Vuorinen, ''Universality in holographic entropy production'' [http://arxiv.org/abs/arXiv:1405.7015 1405.7015]
 
 
* <b>TUW-14-07</b> A. Bagchi, S. Detournay, D. Grumiller, S. Prohazka and M. Riegler, ''Holographic Chern-Simons Theories'' [http://arxiv.org/abs/1404.1919 1404.1919]
 
 
* <b>TUW-14-08</b> D. Grumiller, R. McNees and J. Salzer, ''Cosmological constant as confining U(1) charge in two-dimensional dilaton gravity'' [http://arxiv.org/abs/1406.7007 1406.7007]
 
 
* <b>TUW-14-09</b> Harald Skarke, ''The Evolution of an Inhomogeneous Universe'' [http://arxiv.org/abs/1407.6602 1407.6602]
 
 
* <b>TUW-14-10</b> A. Bagchi, D. Grumiller, J. Salzer, S. Sarkar and F. Schöller, ''Flat space cosmologies in two dimensions'' [http://arxiv.org/abs/1408.5337 1408.5337]
 
 
* <b>TUW-14-11</b> P. Anastasopoulos and R. Richter, ''Light stringy state production'' [http://arxiv.org/abs/1408.4810 1408.4810]
 
 
* <b>TUW-14-12</b> M. Riegler, ''Flat space limit of Cardy formula'' [http://arxiv.org/abs/1408.6931 1408.6831]
 
 
* <b>TUW-14-13</b> R. Baier, H. Nishimura, S. Stricker, ''Scalar field collapse with negative cosmological constant'' [http://arxiv.org/abs/1410.3495 1410.3495]
 
 
* <b>TUW-14-14</b> A. Bagchi, R. Basu, D. Grumiller, M. Riegler, ''Entanglement entropy in Galilean conformal field theories and flat holography'' [http://arxiv.org/abs/arXiv:1410.4089 1410.4089]
 
 
* <b>TUW-14-15</b> M. Gary, D. Grumiller, M. Riegler and J. Rosseel, ''Flat space (higher spin) gravity with chemical potentials'' [http://arxiv.org/abs/arXiv:1411.3728 1411.3728]
 
 
* <b>TUW-14-16</b> A. Rebhan, ''The Witten-Sakai-Sugimoto model: A brief review and some recent results'' [http://arxiv.org/abs/1410.8858 1410.8858]
 
 
=== 2013 ===
 
 
* <b>TUW-13-01</b> D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, ''Holographic applications of logarithmic conformal field theories'' [http://arxiv.org/abs/1302.0280 hep-th/1302.0280]
 
 
* <b>TUW-13-02</b> M. Attems, A. Rebhan, M. Strickland, ''Longitudinal thermalization via the chromo-Weibel instability'' [http://arxiv.org/abs/1301.7749 hep-ph/1301.7749]
 
 
* <b>TUW-13-03</b> M. Attems, A. Rebhan, M. Strickland, ''The chromo-Weibel instability in an expanding background'' [http://arxiv.org/abs/1302.5098 hep-ph/1302.5098]
 
 
* <b>TUW-13-04</b> Roberto Emparan, Daniel Grumiller and Kentaro Tanabe, ''Large D gravity and low D strings'' [http://arxiv.org/abs/arXiv:1303.1995 hep-th/1303.1995]
 
 
*<b>TUW-13-05</b> Steineder, Stricker, Vuorinen, ''Probing the pattern of holographic thermalization with photons'' [http://arxiv.org/abs/arXiv:1304.3404 hep-ph/1304.3404]
 
 
*<b>TUW-13-06</b> Arjun Bagchi, Stephane Detournay and Daniel Grumiller, Joan Simon, ''Cosmic evolution from phase transition of 3-dimensional flat space'' [http://arxiv.org/abs/arXiv:1305.2919 hep-th/1305.2919]
 
 
*<b>TUW-13-07</b> R. Andringa, E. Bergshoeff, J. Rosseel and E. Sezgin, ''Newton-Cartan Supergravity'' [http://arxiv.org/abs/arXiv:1305.6737 hep-th/1305.6737]
 
 
*<b>TUW-13-08</b> S. Stricker, ''Holographic thermalization in N=4 Super Yang-Mills theory at finite coupling'' [http://arxiv.org/abs/arXiv:1307.2736 hep-th/1307.2736]
 
 
*<b>TUW-13-09</b> H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, ''Higher spin theory in 3-dimensional flat space,'' [http://arXiv.org/abs/1307.4768 hep-th/1307.4768]
 
 
*<b>TUW-13-10</b> H. R. Afshar, ''Flat/AdS boundary conditions in three dimensional conformal gravity,'' [http://www.arXiv.org/abs/1307.4855 hep-th/1307.4855]
 
 
*<b>TUW-13-11</b> M. Gary, ''Still No Rindler Firewalls,'' [http://www.arXiv.org/abs/1307.4972 hep-th/1307.4972]
 
 
*<b>TUW-13-12</b> K. Hori and J. Knapp, ''Linear Sigma Models With Strongly Coupled Phases - One Parameter Models,'' [http://www.arXiv.org/ hep-th/1308.xxxx]
 
 
*<b>TUW-13-13</b> R. Baier, S. Stricker, O. Taanila, ''Critical scalar field collpase in AdS3: an analytic approach,'' [http://www.arXiv.org/ hep-th/1309.xxxx]
 
 
*<b>TUW-13-14</b> D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa and D. Rischke, ''Eta, Eta' and eLSM'', [http://arxiv.org/abs/arXiv:1301.3478 hep-ph/1301.3478]
 
 
*<b>TUW-13-15</b> D. Grumiller, M. Irakleidou, I. Lovrekovic and R. McNees, ''Conformal gravity holography in four dimensions'', [http://arxiv.org/abs/arXiv:1310.0819 hep-th/1310.0819]
 
 
*<b>TUW-13-16</b> Harald Skarke, ''Inhomogeneity implies Accelerated Expansion'', [http://arxiv.org/abs/arXiv:1310.1028 astro-ph.CO/1310.1028]
 
 
*<b>TUW-13-17</b> D. Arnaudov, R.C. Rashkov and T. Vetsov, ''On the algebraic curves for circular and folded strings in AdS5 x S5,'' [http://www.arXiv.org/abs/1311.6114 hep-th/1311.6114]
 
 
*<b>TUW-13-18</b> Daniel Grumiller, Mauricio Leston and Dmitri Vassilevich, ''Anti-de Sitter holography for gravity and higher spin theories in two dimensions'', [http://arxiv.org/abs/arXiv:1311.7413 hep-th/1311.7413]
 
 
 
=== 2012 ===
 
 
* <b>TUW-12-01</b> M. Gary, D. Grumiller and R. Rashkov, ''Towards non-AdS holography in 3-dimensional higher spin gravity'' [http://www.arXiv.org/abs/1201.0013 hep-th/1201.0013]
 
 
* <b>TUW-12-02</b> P. Anastasopoulos, I. Antoniadis, K. Benakli, M.D.Goodsel and A. Vichi, ''One-loop adjoint masses for branes at non-supersymmetric angles'' [http://arxiv.org/abs/1201.2663 hep-th/1201.2663]
 
 
* <b>TUW-12-03</b> A. Ipp, J. Evers, C. H. Keitel, K. Z. Hatsagortsyan, ''Streaking at high energies with electrons and positrons'' [http://arxiv.org/abs/1202.0180 hep-ph/1202.0180]
 
 
* <b>TUW-12-04</b> A.P. Braun, A. Collinucci and R. Valandro, ''Algebraic description of G-flux in F-theory: new techniques for F-theory phenomenology'' [http://arxiv.org/abs/1202.5029 hep-th/1202.5029]
 
 
* <b>TUW-12-05</b> H. Steinacker, ''Gravity and compactified branes in matrix models'' [http://arxiv.org/abs/1202.6306 hep-th/1202.6306]
 
 
* <b>TUW-12-06</b> Gabriela-Raluca Mocanu and Daniel Grumiller ''Self-organized criticality in boson clouds around black holes'' [http://arxiv.org/abs/1203.4681 astro-ph/1203.4681]
 
 
* <b>TUW-12-07</b> Victor Batyrev and Maximilian Kreuzer ''Conifold degenerations of Fano 3-folds as hypersurfaces in toric varieties'' [http://arxiv.org/abs/1203.6058 math.AG/1203.6058]
 
 
* <b>TUW-12-08</b> Harald Skarke ''How to Classify Reflexive Gorenstein Cones'' [http://arxiv.org/abs/1204.1181 hep-th/1204.1181]
 
 
* <b>TUW-12-09</b> Niklas Johansson, Ali Naseh and Thomas Zojer ''Holographic two-point functions for 4d log-gravity'' [http://arxiv.org/abs/1205.5804 hep-th/1205.5804]
 
 
* <b>TUW-12-10</b> A.P. Braun, J.Knapp, E.Scheidegger, H.Skarke and N.-O. Walliser ''PALP: a User Manual'' [http://arxiv.org/abs/1205.4147 math.AG/1205.4147]
 
 
* <b>TUW-12-11</b> D.Arnaudov, R.C.Rashkov ''On semiclassical four-point correlators in AdS5 x S5'' [http://arxiv.org/abs/1206.2613 hep-th/1206.2613]
 
 
* <b>TUW-12-12</b> A. Ipp, P. Somkuti ''Yoctosecond metrology through HBT correlations from a quark-gluon plasma'' [http://arxiv.org/abs/1207.0197 hep-th/1207.0197]
 
 
* <b>TUW-12-13</b> R. Baier, S. Stricker, O. Taanila, A. Vuorinen ''Production of Prompt Photons: Holographic Duality and Thermalization'' [http://arxiv.org/abs/arXiv:1207.1116 hep-ph/1207.1116]
 
 
* <b>TUW-12-14</b> R. Baier, S. Stricker, O. Taanila, A. Vuorinen ''Holographic dilepton production in a thermalizing plasma'' [http://arxiv.org/abs/arXiv:1205.2998 hep-ph/1205.2998]
 
 
* <b>TUW-12-15</b> A. Rebhan, D. Steineder ''Probing Two Holographic Models of Strongly Coupled Anisotropic Plasma'' [http://arxiv.org/abs/arXiv:1205.4684 hep-th/1205.4684]
 
 
* <b>TUW-12-16</b> M. Attems, A. Rebhan, M. Strickland ''Instabilities of an anisotropically expanding non-Abelian plasma: 3D+3V discretized hard-loop simulations'' [http://arxiv.org/abs/arXiv:1207.5795 hep-ph/1207.5795]
 
 
* <b>TUW-12-17</b> P. Candelas, A. Constantin, H. Skarke ''An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts'' [http://arxiv.org/abs/1207.4792 hep-th/1207.4792]
 
 
* <b>TUW-12-18</b> A. Gynther, A. Rebhan, D. Steineder ''Thermodynamics and phase diagram of anisotropic Chern-Simons deformed gauge theories'' [http://arxiv.org/abs/arXiv:1207.6283 hep-th/1207.6283]
 
 
* <b>TUW-12-19</b> Michal Michalcik, Radoslav C. Rashkov, "On finite size corrections to the dispersion relations of giant magnon and single spike on γ-deformed T^{1,1}" [http://arxiv.org/abs/arXiv:1208.0698 hep-th/1208.0698]
 
 
* <b>TUW-12-20</b> Arjun Bagchi, Stephane Detournay and Daniel Grumiller ''Flat-Space Chiral Gravity'' [http://arxiv.org/abs/arXiv:1208.1658 hep-th/1208.1658]
 
 
* <b>TUW-12-21</b> Stanley Deser, Sabine Ertl and Daniel Grumiller ''Canonical bifurcation in higher derivative, higher spin, theories'' [http://arxiv.org/abs/arXiv:1208.0339 hep-th/1208.0339]
 
 
* <b>TUW-12-22</b> H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler ''Non-AdS holography in 3-dimensional higher spin gravity - General recipe and example'' [http://arxiv.org/abs/arXiv:1209.2860 hep-th/1209.2860]
 
 
* <b>TUW-12-23</b> D. Steineder, S. A. Stricker and A. Vuorinen ''Thermalization at intermediate coupling'' [http://arxiv.org/abs/arXiv:1209.0291 hep-ph/1209.0291]
 
 
* <b>TUW-12-24</b> M. Gary ''A Holographic Holographic Bound and the Black Hole S-Matrix'' [http://arxiv.org/abs/arXiv:1209.3040 hep-th/1209.3040]
 
 
* <b>TUW-12-25</b> M. Bertin, S. Ertl, P. Ghorbani, D. Grumiller, N. Johansson and D. Vassilevich ''Lobachevsky holography in conformal Chern-Simons gravity'' [http://arxiv.org/abs/arXiv:1212.3335 hep-th/1212.3335]
 
 
* <b>TUW-12-26</b> J. Aparicio, D. Grumiller, E. Lopez, I. Papadimitriou and S. Stricker ''Bootstrapping gravity solutions'' [http://arxiv.org/abs/arXiv:1212.3609 hep-th/1212.3609]
 
 
* <b>TUW-12-27</b> Harald Skarke ''Why is the Legendre Transformation Involutive?'' [http://arxiv.org/abs/arXiv:1209.6193 math-ph/1209.6193]
 
 
* <b>TUW-12-28</b> K. Chelabi, M. Schweda and S. Kouadik ''Translation-Invariant Renormalizable Noncommutative Chern-Simons Theory'' [http://arxiv.org/abs/arXiv:1207.4591 hep-th/1207.4591]
 
 
* <b>TUW-12-29</b> D. N. Blaschke, T. Garschall, F. Gieres, F. Heindl, M. Schweda and M. Wohlgenannt ''On the Renormalization of Non-Commutative Field Theories'' [http://arxiv.org/abs/arXiv:1207.5494 hep-th/1207.5494]
 
 
* <b>TUW-12-30</b> D. Grumiller, R. McNees and S. Zonetti, ''Black holes in the conical ensemble'', [http://arxiv.org/abs/arXiv:1210.6904 gr-qc/1210.6904]
 
 
* <b>TUW-12-31</b> A. Ipp, ''Unstable dynamics of Yang-Mills fields at early times of heavy ion collisions'', [http://arxiv.org/abs/arXiv:1210.5150 hep-th/1210.5150]
 
 
* <b>TUW-12-32</b> P. Anastasopoulos, M. Cvetic, R. Richter, P. Vaudrevange ''Discrete symmetries in semi-realistic orientifold compactifications'', [http://arxiv.org/abs/arXiv:1210.xxxx hep-th/1210.xxxx]
 
 
* <b>TUW-12-33</b> P. Anastasopoulos, M. Goodsell, R. Richter, ''Excited twist correlators in open string models'', [http://arxiv.org/abs/arXiv:1211.xxxx hep-th/1211.xxxx]
 
 
* <b>TUW-12-34</b> H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, ''Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings'', [http://arxiv.org/abs/arXiv:1211.4454 hep-th/1211.4454]
 
 
* <b>TUW-12-35</b> H. Afshar, H. Firouzjahi and S. Parvizi, ''dS solutions with co-dimension two branes in six dimensions'', [http://arxiv.org/abs/arXiv:1212.xxxx hep-th/1212.xxxx]
 
 
* <b>TUW-12-36</b> D. Parganlija, ''Quarkonium Phenomenology in Vacuum'', [http://arxiv.org/abs/arXiv:1208.0204 hep-ph/1208.0204]
 
 
* <b>TUW-12-37</b> D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa and D. Rischke, ''Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons'', [http://arxiv.org/abs/arXiv:1208.0585 hep-ph/1208.0585]
 
 
* <b>TUW-12-38</b> D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa and D. Rischke, ''Phenomenology of Axial-Vector Mesons from an Extended Linear Sigma Model'', [http://arxiv.org/abs/arXiv:1208.2054 hep-ph/1208.2054]
 
 
* <b>TUW-12-39</b> D. Parganlija, P. Kovacs, Gy. Wolf, F. Giacosa and D. Rischke, ''Scalar mesons in a linear sigma model with (axial-)vector mesons'', [http://arxiv.org/abs/arXiv:1208.5611 hep-ph/1208.5611]
 
 
* <b>TUW-12-40</b> F. Giacosa, D. Parganlija, P. Kovacs and Gy. Wolf, ''Phenomenology of light mesons within a chiral approach'', [http://arxiv.org/abs/arXiv:1208.6202 hep-ph/1208.6202]
 
 
* <b>TUW-12-41</b> D. Parganlija, ''Scalar Mesons and FAIR'', [http://arxiv.org/abs/arXiv:1211.4804 hep-ph/1211.4804]
 
 
 
=== 2011 ===
 
 
* <b>TUW-11-01</b> R. S. Garavuso, L. Katzarkov, M. Kreuzer and A. Noll, ''Super Landau-Ginzburg mirrors and algebraic cycles'' [http://arxiv.org/abs/1101.1368 hep-th/1101.1368]
 
 
* <b>TUW-11-02</b> J. Knapp, M. Kreuzer, C. Mayrhofer and N.-O. Walliser, ''Toric Construction of Global F-Theory GUTs'', JHEP03(2011)138, [http://arxiv.org/abs/1101.4908 hep-th/1101.4908]
 
 
* <b>TUW-11-03</b> J. Knapp and M. Kreuzer, ''Toric Methods in F-theory Model Building'' [http://arxiv.org/abs/1103.3358 hep-th/1103.3358]
 
 
* <b>TUW-11-04</b> A. Ipp, ''Yoctosecond photon pulse generation in heavy ion collisions'' [http://arxiv.org/abs/1102.0420 hep-ph/1102.0420]
 
 
* <b>TUW-11-05</b> S. Carloni, D. Grumiller and F. Preis, ''Solar system constraints on Rindler acceleration'' [http://arxiv.org/abs/1103.0274 astro-ph/1103.0274]
 
 
* <b>TUW-11-06</b> M. Bertin, D. Grumiller, D. Vassilevich and T. Zojer, ''Generalised massive gravity one-loop partition function and AdS/(L)CFT'' [http://arxiv.org/abs/1103.5468 hep-th/1103.5468]
 
 
* <b>TUW-11-07</b> H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, ''Holograms of Conformal Chern-Simons Gravity'' [http://arxiv.org/abs/1106.6299 hep-th/1106.6299]
 
 
* <b>TUW-11-08</b> D. Arnaudov, R.C. Rashkov, and T. Vetsov, ''Three- and four-point correlators of operators dual to folded string solutions in AdS_5 x S^5'' [http://arxiv.org.abs/1103.6145 hep-th/1103.6145]
 
 
* <b>TUW-11-09</b> P. Anastasopoulos, I. Antoniadis, K. Benakli, M.D.Goodsel and A. Vichi, ''One-loop adjoint masses for non-supersymmetric intersecting branes'' [http://arxiv.org.abs/1105.0591 hep-th/1105.0591]
 
 
* <b>TUW-11-10</b> D. Arnaudov and R.C. Rashkov, ''Quadratic corrections to three-point functions'' [http://arxiv.org.abs/1106.0859 hep-th/1106.0859]
 
 
* <b>TUW-11-11</b> D. Arnaudov and R.C. Rashkov, ''Three-point correlators: examples from Lunin-Maldacena background'' [http://arxiv.org.abs/1106.4298 hep-th/1106.4298]
 
 
* <b>TUW-11-12</b> A. P. Braun and N.-O. Walliser, ''A new offspring of PALP'' [http://arxiv.org.abs/1106.4529 hep-th/1106.4529]
 
 
* <b>TUW-11-13</b> A. Rebhan and D. Steineder, ''Electromagnetic signatures of a strongly coupled anisotropic plasma'' [http://arxiv.org/abs/1106.3539 hep-th/1106.3539]
 
 
* <b>TUW-11-14</b> M. Cicoli, M. Kreuzer and Christoph Mayrhofer, ''Toric K3-Fibred Calabi-Yau Manifolds with del Pezzo Divisors for String Compactifications'' [http://arxiv.org/abs/1107.0383 hep-th/1107.0383]
 
 
* <b>TUW-11-15</b> D. Grumiller and F. Preis, ''Rindler force at large distances'' [http://arxiv.org/abs/1107.2373 astro-ph/1107.2373]
 
 
* <b>TUW-11-16</b> C.-M. Chen, S. Hu, T. Li, D.V. Nanopoulos, ''Type IIB Supersymmetric Flux vacua'' [http://arxiv.org/abs/1107.3465 hep-th/1107.3465]
 
 
* <b>TUW-11-17</b> K. Z. Hatsagortsyan, A. Ipp, J. Evers, A. Di Piazza, and C. H. Keitel, ''Ultra-strong laser pulses: streak-camera for gamma-rays via pair production and quantum radiative reaction'' [http://arxiv.org/abs/1107.4036 physics.ins-det/1107.4036]
 
 
* <b>TUW-11-18</b> D. Burke and R. Wimmer, ''Quantum energies and tensorial central charges of confined monopoles'' [http://arxiv.org/abs/1107.3568 hep-th/1107.3568]
 
 
* <b>TUW-11-19</b> A.P. Braun, A. Collinucci and R. Valandro, ''G-Flux in F-theory and algebraic cycles'' [http://arxiv.org/abs/1107.5337 hep-th/1107.5337]
 
 
* <b>TUW-11-20</b> A.P. Braun, N. Johansson, M. Larfors and N.-O. Walliser, ''Restrictions on infinite sequences of type IIB vacua'' [http://arxiv.org/abs/1108.1394 hep-th/1108.1394]
 
 
* <b>TUW-11-21</b> S. Carlip and D. Grumiller, ''Lower bound on the spectral dimension near a black hole'' [http://arxiv.org/abs/1108.4686 gr-qc/1108.4686]
 
 
* <b>TUW-11-22</b> H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller and N. Johansson, ''Conformal Chern-Simons holography - lock, stock and barrel'' [http://arxiv.org/abs/1110.5644 hep-th/1110.5644]
 
 
* <b>TUW-11-23</b> P. Anastasopoulos, M. Bianchi and R. Richter, ''Light stringy states'' [http://arxiv.org/abs/1110.5424 hep-th/1110.5424]
 
 
* <b>TUW-11-24</b> P. Anastasopoulos, M. Bianchi and R. Richter, ''On closed-string twist-field correlators and their open-string descendants'' [http://arxiv.org/abs/1110.5359 hep-th/1110.5359]
 
 
* <b>TUW-11-25</b> Michal Michalcik, Radoslav C. Rashkov, Maria Schimpf, ''Three-point correlators: Examples from Lunin-Maldacena background '' [http://arxiv.org.abs/1107.5795 hep-th/1107.5795]
 
 
* <b>TUW-11-26</b> D. Arnaudov and R.C. Rashkov, ''Subleading semiclassical four-poinr functions'' [http://arxiv.org.abs/1111.xxxx hep-th/1111.xxxx]
 
 
* <b>TUW-11-27</b> F. Preis, A. Rebhan and A. Schmitt, ''Holographic baryonic matter in a background magnetic field'' [http://arxiv.org/abs/1109.6904 hep-th/1109.6904]
 
 
* <b>TUW-11-28</b> A. Rebhan and D. Steineder, ''Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma'' [http://arxiv.org/abs/1110.6825 hep-th/1110.6825]
 
 
 
 
=== 2010 ===
 
 
* <b>TUW-10-01</b> D.N. Blaschke, E. Kronberger, R.I.P. Sedmik and M. Wohlgenannt, ''Gauge Theories on Deformed Spaces'' [http://arxiv.org/abs/1106.4529 math.AG/1106.4529]
 
 
* <b>TUW-10-02</b> V.G. Filev and R.C. Rashkov, ''Magnetic Catalysis of Chiral Symmetry Breaking. A Holographic Prospective.'' [http://arxiv.org/abs/1010.0444 hep-th/1010.0444]
 
 
* <b>TUW-10-03</b> S. Ertl, D. Grumiller and N. Johansson, All stationary axi-symmetric local solutions of topologically massive gravity. [http://arxiv.org/abs/1006.3309 hep-th/1006.3309]
 
 
* <b>TUW-10-04</b> A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, ''Holographic Anomalous Conductivities and the Chiral Magnetic Effect'' [http://arxiv.org/abs/1005.2587 hep-th/1005.2587]
 
 
* <b>TUW-10-05</b> C. P. Herzog, S. A. Stricker and A. Vuorinen, ''Hyperfine splitting and the Zeeman effect in holographic heavy-light mesons'' [http://arxiv.org/abs/1005.3285 hep-th/1005.3285]
 
 
* <b>TUW-10-06</b> C.-M. Chen and Y.-C. Chung, ''Flipped SU(5) GUTs from E8 singularity in F-theory'' [http://arxiv.org/abs/1005.5728 hep-th/1005.5728]
 
 
* <b>TUW-10-07</b> C.-M. Chen , J. Knapp , M. Kreuzer and C. Mayrhofer, ''Global SO(10) F-theory GUTs'' [http://arxiv.org/abs/1005.5735 hep-th/1005.5735]
 
 
* <b>TUW-10-08</b> M. Schweda and M. Wohlgenannt, ''On NCQFT and dimensionless insertions'' [http://arxiv.org/abs/1005.5107 hep-th/1005.5107]
 
 
* <b>TUW-10-09</b> D. Arnaudov, H. Dimov and R.C. Rashkov, ''On the pulsating strings in $AdS_5\times T^{1,1}$ '' [http://arxiv.org/abs/1005.5334 hep-th/1005.1539]
 
 
* <b>TUW-10-10</b> Jean-Paul Blaizot, Andreas Ipp, Nicolás Wschebor, ''Calculation of the pressure of a hot scalar theory within the Non-Perturbative Renormalization Group'' [http://arxiv.org/abs/1007.0991 hep-th/1007.0991]
 
 
* <b>TUW-10-11</b> Matthias R. Gaberdiel, Daniel Grumiller and Dmitri Vassilevich, ''Graviton 1-loop partition function for 3-dimensional massive gravity'' [http://arxiv.org/abs/1007.5189 hep-th/1007.5189]
 
 
* <b>TUW-10-12</b> Andreas Ipp, Jörg Evers, Christoph H. Keitel, Karen Z. Hatsagortsyan, ''Streaking at high energies with electrons and positrons'' [http://arxiv.org/abs/1008.0355 hep-th/1008.0355]
 
 
* <b>TUW-10-13</b> Daniel Grumiller, Niklas Johansson and Thomas Zojer, ''Short-cut to new anomalies in gravity duals to logarithmic conformal field theories'' [http://arxiv.org/abs/1010.4449 hep-th/1010.4449]
 
 
* <b>TUW-10-14</b> Matteo Beccaria, Maximilian Kreuzer and Andrea Puhm, ''Counting charged massless states in the (0,2) heterotic CFT/geometry connection'' [http://arxiv.org/abs/1010.4564 hep-th/1010.4564]
 
 
* <b>TUW-10-15</b> C.-M. Chen and Y.-C. Chung, ''On F-theory E<sub>6</sub> GUTs'' [http://arxiv.org/abs/1010.5536 hep-th/1010.5536]
 
 
* <b>TUW-10-16</b> P. Anastasopoulos, G. K. Leontaris, R. Richter, A. N. Schellekens, ''SU(5) D-brane realizations, Yukawa couplings and proton stability'' [http://arxiv.org/abs/1010.5188 hep-th/1010.5188]
 
 
* <b>TUW-10-17</b> Andreas Ipp, Anton Rebhan, Michael Strickland, ''Non-Abelian plasma instabilities: SU(3) vs. SU(2)'' [http://arxiv.org/abs/1012.0298 hep-ph/1012.0298]
 
 
* <b>TUW-10-18</b> M.E. Carrington and A. Rebhan, ''Perturbative and Nonperturbative Kolmogorov Turbulence in a Gluon Plasma'' [http://arxiv.org/abs/1011.0393 hep-ph/1011.0393]
 
 
* <b>TUW-10-19</b> Daniel Grumiller, ''Model for gravity at large distances'' [http://arxiv.org/abs/1011.3625 astro-ph/1011.3625]
 
 
* <b>TUW-10-20</b> D. Arnaudov and R.C. Rashkov, ''On semiclassical calclation of three-point functions in AdS_4 x CP^3'' [http://arxiv.org/abs/1011.4669 hep-th/1011.4669]
 
 
* <b>TUW-10-21</b> F. Preis, A. Rebhan and A. Schmitt, ''Inverse magnetic catalysis in dense holographic matter'' [http://arxiv.org/abs/1012.4785 hep-th/1012.4785]
 
 
 
=== Previous years ===
 
 
: [[Fundamental_Interactions_Preprints_2009|2009]], [[Fundamental_Interactions_Preprints_2008|2008]], [[Fundamental_Interactions_Preprints_2007|2007]], [[Fundamental_Interactions_Preprints_2006|2006]], [http://tph.tuwien.ac.at/~moessmer/preprints05.html 2005], [http://tph.tuwien.ac.at/~moessmer/preprints04.html 2004], [http://tph.tuwien.ac.at/~moessmer/preprints03.html 2003], [http://tph.tuwien.ac.at/~moessmer/preprints02.html 2002], [http://tph.tuwien.ac.at/~moessmer/preprints01.html 2001], [http://tph.tuwien.ac.at/~moessmer/preprints00.html 2000], [http://tph.tuwien.ac.at/~moessmer/preprints99.html 1999], [http://tph.tuwien.ac.at/~moessmer/preprints98.html 1998], [http://tph.tuwien.ac.at/~moessmer/preprints97.html 1997], [http://tph.tuwien.ac.at/~moessmer/preprints96.html 1996]
 
 
For published articles, talks, and poster presentations see [[Publications]]
 
 
-->
 

Revision as of 22:53, 2 December 2016


According to our present knowledge there are four fundamental interactions in nature: gravity, electromagnetism, weak and strong interaction with electromagnetism and weak interaction unified in the electroweak theory. Gravity as well as electromagnetism are macroscopic phenomena, immediately present in our everyday life, like falling objects and static electricity. Weak and strong nuclear interactions, on the other hand, become only important on the microscopic, atomic and subatomic level.

The most important aspect of the strong interaction is that it provides stability to the nucleus overcoming electric repulsion, whereas the transmutation of neutrons into protons is the most well-known weak phenomenon. The aim of fundamental physics may be described as obtaining a deeper understanding of these interactions, and penultimately finding a unified framework, which understands the different interactions as different aspects of a single truly fundamental interaction.


Quantum field theory and non-commutative geometry

Describing the interactions on a more fundamental level the concepts of relativistic quantum field theories are employed. With the advent of quantum mechanics in the first decades of the 20th century it was realized that the electromagnetic field, including light, is quantized and can be seen as a stream of particles, the photons. This implies that the interaction between matter is mediated by the exchange of photons. The concept of relativistic quantum field theory is very simple, unifying a classical field theory with the concepts of quantum theory and special relativity.

Full propagator of free propagation
Fig.: Full propagator in terms of free propagation and self-energy corrections.

The construction of the perturbative NCQFT leads to new types of infrared (IR) singularities which represent a severe obstacle for the renormalization program at higher order and therefore lead to inconsistencies. The IR singularities are produced by the so-called UV finite nonplanar one-loop graphs (which are expected to be UV divergent by naive power counting) in U(N) gauge models and also in scalar field theories. The interplay between expected UV divergencies and the existence of the IR singularities is the so-called UV/IR mixing problem of NCQFT. One also has to stress that the usual UV divergences may be removed by the standard renormalization procedure.

The present research activities are devoted to find solutions for the UV/IR mixing problem of noncommutative gauge field models. In order to respect the effects of noncommutativity implied by the non-abelian structure a consistent treatment requires the use of the BRS quantization procedure even for a U(1) deformed Maxwell theory.


Gravitation

Since the groundbreaking work of Einstein, gravitation is conceived as defining the geometry of spacetime - even defining the very concepts of time and space itself. Planetary motion as well as the motion of massless particles, that is to say light, become the straightest possible paths in a non-Euclidean geometry.

Light-cone representing causal past and future
Fig.: Light-cone of an event representing its causal past and future.

General relativity is a very successful theory. Its predictions range from the deflection of light by massive bodies which distort spacetime (Einstein-lensing) to that of gravitational radiation carrying away energy in the form of "ripples" in spacetime (Hulse-Taylor binary pulsar), as well as to the expansion of the universe (microwave background radiation). One of the most spectacular predictions of general relativity is the existence of black holes, which by now has been confirmed indirectly by numerous astrophysical observations.

Despite of these successes there are several unresolved problems in the physics of gravitation, some of which are considered as the biggest problems in contemporary theoretical physics:

  • The cosmological constant problem entails a gigantic discrepancy (123 orders of magnitude) between observation and naive theoretical expectation, and so far no satisfying explanation exists that resolves this discrepancy.
  • Numerous astrophysical and cosmological observations reveal discrepancies with the theory of general relativity, unless we postulate the existence of dark matter, which so far has not been detected in particle physics experiments.
  • The elusive theory of quantum gravity still is very much a theory under construction, with several conceptual and technical issues seeking for solutions.
  • General relativity predicts its own failure as a consequence of the famous singularity theorems. Physically this means that spacetime contains regions where the curvature grows without a bound. The most prominent examples are the singularities within black holes as well as the Big Bang singularity.

Deeper insights into the structure of physical systems have often been achieved by the imposition of symmetries. This usually breaks the problem down into simpler building blocks which ideally allow a complete solution. Gravity is no exception to this rule since the prototypic black-hole solution, the Schwarzschild geometry (actually the first exact non-trivial solution of the Einstein-equations), has been found precisely along theses lines, i.e. upon imposing spherical symmetry. It is therefore natural to pursue a similar plan of attack for the quantization of gravity. The corresponding models become gravitational theories in a 1+1 dimensional spacetime coupled to the area of the two-sphere which becomes a dynamical variable in the reduced theory. There are several other ways how lowerdimensional (1+1 and 2+1) models arise from higherdimensional configurations in string theory or general relativity, and the description of gravity in lower dimensions is one of the key research fields of our group.


Quark-Gluon plasma

Quantum chromodynamics (QCD) is the accepted theory of the strong interactions responsible for the binding of quarks into hadrons such as protons and neutrons, and the binding of protons and neutrons into atomic nuclei. The fundamental particles of QCD, the quarks and gluons, carry a new form of charge, which is called color because of its triplet nature in the case of the quarks (e.g. red, green, blue); gluons come in eight different colors which are composites of color and anticolor charges. However, quarks and gluons have never been observed as free particles. Nevertheless, because quarks have also electrical charge, they can literally be seen as constituents of hadrons by deep inelastic scattering using virtual photons. The higher the energy of the probing photon, the more do the quarks appear as particles propagating freely within a hadron. This feature is called "asymptotic freedom". It arises from so-called nonabelian gauge field dynamics, with gluons being the excitations of the nonabelian gauge fields similarly to photons being the excitations of the electromagnetic fields, except that gluons also carry color charges. Asymptotic freedom is well understood, and the Nobel prize was awarded to its main discoverers Gross, Politzer, and Wilczek in 2004.

Much less understood is the phenomenon of "confinement", which means that only color-neutral bound states of quarks and gluons exist. This confinement can in fact be broken in a medium if the density exceeds significantly that of nuclear matter. When hadrons overlap so strongly that they loose their individuality, quarks and gluons come into their own as the elementary degrees of freedom. It is conceivable that such conditions are realized in the cores of certain neutron stars.

phase diagram of quark-gluon matter
Fig.: Qualitative sketch of the phase diagram of quark-gluon matter as a function of temperature T and quark chemical potential µ. Solid lines denote rst-order phase transitions, the dashed line a rapid crossover.


At comparatively low temperatures, quark matter is known to form Cooper pairs and turns into a color superconductor. Also at temperatures just above the superconductivity phase new phenomena appear, which reflect that quark matter has strong deviations from an ideal Fermi liquid. In particular, there is anomalous behaviour in the low-temperature specific heat, which has been calculated for the first time systematically by our group. This has already found application in revised calculations of the cooling behavior of young neutron stars.

String theory

The names of the fundamental forces are related to their strength. The strong force is much stronger than electromagnetism and is thus able to overcome the repulsive force between objects with the same electrical charge (protons or quarks). The weak force is weaker than electromagnetism but still much stronger than gravity. The reason that we almost only recognize gravity in everyday life is that the macroscopic objects are neutral. They don't carry an effective color charge and they carry - if at all - only very small electric charges. For gravity there is no negative charge (negative mass), so that all the small gravitational effects add up to something which is strong enough to move galaxies and build black holes. The seperate description of the forces is quite accurate by now. This is summarized in the standard model of particle physics.

A measure for the strength of a force are the coupling constants of the corresponding theory. They are, however, not constant, but depend on the energy level one is dealing with. If one extrapolates their values to high energies, one discovers that the couplings of electromagnetism, strong and weak force meet at a certain energy level almost in one single point (see Figure 1). This supports the idea that those three forces could be just different aspects of one and the same universal force. There are several theories which try to describe this unification. They are called GUTs, 'grand unified theories'. However, to be really 'grand', such a unification should also include gravity, whose coupling constant is far weaker still at this high energies. The theory, which will manage to unify all forces, including gravity, is sometimes called TOE, "theory of everything". String theory is one candidate, and at present actually the only one for this TOE.

Point particle and closed string interaction
Fig.: Left: Point particle interaction, Right: Closed string interaction, note the smooth interaction surface.


'SUSY' stands for supersymmetry and means that there is an exchange symmetry between fermionic particles (like quarks and electrons) and bosonic ones (like photons and even gravitons, if one includes gravity into the considerations). It does, however, not relate the already known particles, but it predicts new supersymmetric partners to the known particles (called e.g. squarks, selectrons, photinos and gravitinos). So far none of those superparticles has been discovered, but there are a lot of theoretical reasons for believing in supersymmetry. Supersymmetry is an integral part of string theory, or more precisely 'superstring theory'. If supersymmetry is realized at energies not too far above the scale of electroweak symmetry breaking, the Large Hadron Collider at CERN may be able to discover its signatures in its ongoing searches of physics beyond the standard model.

For further information and news on fundamental physics visit:

Whatsnew.gif

This contains the public outreach web pages of the Fachausschuss für Kern- und Teilchenphysik (FAKT) of the ÖPG (Austrian Physical Society), which our institute are hosting.