Institute for Theoretical Physics

Line 3: Line 3:
 
----
 
----
   
<h1>Der Computer kann auch nicht alles</h1>
+
<h1>Neue Theorie ermöglicht Blick ins Innere der Erde</h1>
  +
Unter extremem Druck kann es zu Phasenübergängen kommen, die sich mit herkömmlichen Methoden nicht berechnen lassen. Durch eine neue Theorie, entwickelt an der TU Wien und der Universität Wien, wird eine genauere Analyse seismischer Wellen und ein Einblick in die innersten Eigenschaften unserer Erde möglich.<br>
 
Um Materialeigenschaften Atom für Atom verstehen zu können, braucht man nicht bloß Rechenpower, sondern auch neue kreative Ideen. Egal wie leistungsfähig ein Computer ist – in der Wissenschaft ist er niemals gut genug. <br>
 
   
[[image:Surface_c0817fe00a.jpg|right|400px]]
+
[[image:Erde.jpg|right|400px]]
  +
In der Erde herrscht gewaltiger Druck - die Phasenübergänge, die sich dadurch ergeben, können nun endlich berechnet werden.<br>
Der gelbe Bereich der Oberfläche hat einen stärkeren Einfluss auf das herannahende Molekül (blau), und muss anders in die Rechnung einbezogen werden als der Rest der Oberfläche (grau).<br>
 
   
[[image:Libisch_Florian_e782b37ef9.jpg|right|400px]]
+
[[image:Valenzelektronendichte.jpg|right|400px]]
  +
Computerberechnung der Valenzelektronendichte in Strontiumtitanat. Inset: Die Perovskit-Struktur<br>
Florian Libisch<br>
 
   
  +
[[image:Troester.jpg|right|200px]]
Wenn man mit einem neuen, schnelleren Modell nämlich endlich die Rechnungen durchführen kann, an denen das Vorgängermodell gescheitert ist, hat man sofort die nächste Idee für eine noch komplexere Rechnung. Besonders ausgeprägt ist dieses Problem in der Materialwissenschaft auf quantenmechanischem Niveau. Manche Rechenaufgaben kann man allerdings lösen, indem man nicht einfach immer mehr Rechenpower anwendet, sondern stattdessen die vorhandenen Ansätze klug verknüpft.<br>
 
  +
Oben: Andreas Tröster, Wilfried Schranz; unten: Peter Blaha, Ferenc Karsai (jeweils v.l.n.r)<br>
  +
  +
Ins Innere unseres Planeten zu gelangen ist eine schwierige Aufgabe – das hat schon Jules Verne in seinem berühmten Roman "Die Reise zum Mittelpunkt der Erde" beschrieben. Auch heute noch können wir nur indirekt durch seismische Messungen Information über Struktur und Zusammensetzung der Erde gewinnen. Um solche Daten allerdings richtig interpretieren zu können, braucht man eine exakte Beschreibung der Materialien im Erdinneren. Einem Team von Wissenschaftlern der TU Wien und der Universität Wien unter Führung des theoretischen Physikers Andreas Tröster (TU Wien) gelang es nun mit Hilfe quantenphysikalischer Berechnungen, bestimmte Phasenübergänge, wie sie bei hohem Druck im Erdinneren stattfinden, mit bisher noch nie dagewesener Präzision zu beschreiben. Die neue Theorie wurde nun im Fachjournal „Physical Review X“ publiziert.<br>
   
   
Line 20: Line 22:
   
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
  +
> Der Computer kann auch nicht alles<br>
 
> Laserphysik auf den Kopf gestellt <br>
 
> Laserphysik auf den Kopf gestellt <br>
 
> Mit Neutronen auf der Suche nach der Dunklen Energie <br>
 
> Mit Neutronen auf der Suche nach der Dunklen Energie <br>

Revision as of 10:33, 24 July 2014

Logo Institute for Theoretical Physics


Neue Theorie ermöglicht Blick ins Innere der Erde

Unter extremem Druck kann es zu Phasenübergängen kommen, die sich mit herkömmlichen Methoden nicht berechnen lassen. Durch eine neue Theorie, entwickelt an der TU Wien und der Universität Wien, wird eine genauere Analyse seismischer Wellen und ein Einblick in die innersten Eigenschaften unserer Erde möglich.

Erde.jpg

In der Erde herrscht gewaltiger Druck - die Phasenübergänge, die sich dadurch ergeben, können nun endlich berechnet werden.

Valenzelektronendichte.jpg

Computerberechnung der Valenzelektronendichte in Strontiumtitanat. Inset: Die Perovskit-Struktur

Troester.jpg

Oben: Andreas Tröster, Wilfried Schranz; unten: Peter Blaha, Ferenc Karsai (jeweils v.l.n.r)

Ins Innere unseres Planeten zu gelangen ist eine schwierige Aufgabe – das hat schon Jules Verne in seinem berühmten Roman "Die Reise zum Mittelpunkt der Erde" beschrieben. Auch heute noch können wir nur indirekt durch seismische Messungen Information über Struktur und Zusammensetzung der Erde gewinnen. Um solche Daten allerdings richtig interpretieren zu können, braucht man eine exakte Beschreibung der Materialien im Erdinneren. Einem Team von Wissenschaftlern der TU Wien und der Universität Wien unter Führung des theoretischen Physikers Andreas Tröster (TU Wien) gelang es nun mit Hilfe quantenphysikalischer Berechnungen, bestimmte Phasenübergänge, wie sie bei hohem Druck im Erdinneren stattfinden, mit bisher noch nie dagewesener Präzision zu beschreiben. Die neue Theorie wurde nun im Fachjournal „Physical Review X“ publiziert.




Mehr dazu auf unserer News-Seite sowie weitere stories;
> Der Computer kann auch nicht alles
> Laserphysik auf den Kopf gestellt
> Mit Neutronen auf der Suche nach der Dunklen Energie
> Teilchenmuster, erzeugt durch Oberflächenladung
> Wenn das Licht im Verkehrsstau steckt
> Kochrezept für ein Universum
> Award of Excellence an Dominik Steineder
> Logik und Teilchen - neues Doktoratskolleg
> Videotipp: Phasenübergänge, visualisiert am Computer
> OePG-Studierendenpreis an Max Riegler
> Unendlich ist ungefähr zwei
> Steuerbare Zufallslaser
> Ehrenmedaille für Prof. Maria Ebel
> Standing Ovations für den TU-Chor
> Möchten Sie Ihr schwarzes Loch mit Milch?
> Stefan Nagele - Promotion Sub Auspiciis
> Zwischen Physik und Chemie
> Quanteneffekte in Super-Zeitlupe
> 400.000 Euro für Schwarze Löcher + das holograph. Prinzip
> Gefrorenes Chaos
> Ultrakurze Laserpulse kontrollieren chemische Prozesse
> Schwingende Saiten zwischen zwei Buchdeckeln
> Die schnellste Stoppuhr der Welt - bald am CERN?
> Der Molekül-Baukasten; Strukturen, die sich selbst
> Nano-Hillocks: Wenn statt Löchern Berge wachsen
> DACAM - neues Center für atomistische Simulationen in Wien


Das Institut für Theoretische Physik trauert um sein früheres Mitglied,

Adam.jpg

wiss. Oberrat Dipl.-Ing. Dr. Gerhard ADAM
(8.12.1932 - 30.12.2012)

Nachruf


Research

The research program at our institute is characterized by a remarkable diversity covering a broad spectrum of topics ranging from high-energy physics and quantum field theory to atomic and condensed matter physics. As a focus area, non-linear dynamics of complex systems including aspects of quantum cryptography and quantum information plays an important role. Many of the research topics make use of and belong to the subdiscipline "computational physics".

The breadth of activities at our institute provides advanced students as well as young researchers with the opportunity to be exposed to a multitude of state-of the art research directions and to receive a broad-based academic training.

Access to query mask of the publication database of the Vienna University of Technology. Direct access to the most recent publications.

Teaching

Teaching theoretical physics to young colleagues is an important part of our activities. Physics nowadays is a very wide field of knowledge, which progresses with ever increasing pace. We are aware that teaching must be directed towards students specializing in experimental as well as in theoretical physics, and we are committed to Humboldt’s program of teaching science through practicing science.

Access to query mask of the teaching database of the Vienna University of Technology. Direct access to all courses offered by our institute.

Talks

Information on physics talks in Vienna can be found in the Calendar of Physics Talks.

Contact

Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstrasse 8-10/136
Tower B (yellow), 10th floor
A-1040 Wien, AUSTRIA
TEL +43 1 58801x13601, x13602 (secretariat)
FAX +43 1 5880113699
e-mail heike.hoeller (at) tuwien.ac.at