Institute for Theoretical Physics

Line 3: Line 3:
 
----
 
----
   
  +
<h1>"Cavity Protection Effect" macht Quanteninformation langlebig</h1>
<h1>Neues Material ermöglicht ultradünne Solarzellen</h1>
 
  +
Hybridsysteme aus Mikrowellenresonatoren und Atom-Spins in Diamant gelten als Hoffnungsträger für zukünftige Quantentechnologien. Durch einen neuartigen Trick gelang es Forschern an der TU Wien, die Speicherdauer in diesem System deutlich zu verbessern.<br>
An der TU Wien gelang es, zwei unterschiedliche Halbleitermaterialien zu kombinieren, die jeweils aus nur drei Atomlagen bestehen. Dadurch ergibt sich eine vielversprechende neue Struktur für Solarzellen.<br>
 
   
[[image:Furchi-Mueller-Pospischil.jpg|right|400px]]
+
[[image:Quantensystem.jpg|right|400px]]
  +
Das an der TU Wien verwendete Quantensystem: In der Mitte sitzt ein schwarzer Diamant mit Stickstoffatomen, sie koppeln an das Licht eines Mikrowellenresonators.<br>
Marco Furchi, Thomas Müller, Andreas Pospischil (v.l.n.r.)<br>
 
 
[[image:Schichten.jpg|right|400px]]
 
Das Schichtsystem der Solarzelle: innen die beiden Halbleiter, darüber und darunter befinden sich elektrische Kontakte.<br>
 
   
 
[[image:Team.jpg|right|400px]]
Durchsichtige, hauchdünne, biegsame Solarzellen könnten bald Wirklichkeit werden. An der TU Wien gelang es Thomas Müller und seinen Mitarbeitern Marco Furchi und Andreas Pospischil, eine neuartige Halbleiterstruktur aus zwei ultradünnen Atomschichten herzustellen, die sich ausgezeichnet für den Bau von Solarzellen eignet. <br>
 
  +
Das Team: Jörg Schmiedmayer, Johannes Majer, Stefan Putz, Dmitry Krimer und Stefan Rotter (v.l.n.r)<br>
  +
  +
Die Elektronik in unseren Computern kennt nur zwei Zustände: entweder null oder eins. Quantensysteme hingegen können beliebige Überlagerungen von Zuständen annehmen – also null und eins gleichzeitig. Man hofft, basierend darauf in Zukunft superschnelle Quantencomputer bauen zu können, doch bis dahin sind noch schwierige technologische Probleme zu lösen. Insbesondere hat man damit zu kämpfen, dass gespeicherte Quantenzustände durch Wechselwirkungen mit der Umgebung extrem leicht zerstört werden. An der TU Wien ist es nun gelungen, einen speziellen Schutzeffekt zu nutzen, um die Stabilität eines besonders vielversprechenden Quantensystems deutlich zu erhöhen.<br>
   
Um diesen Effekt zu ermöglichen, müssen die Energien der Elektronen in den beiden Schichten optimal angeglichen werden, was im Experiment durch ein elektrostatisches Feld geschieht. Florian Libisch und Prof. Joachim Burgdörfer vom Institut für Theoretische Physik der TU Wien konnten mit Computersimulationen berechnen, wie sich die Energie der Elektronen in den beiden Materialien ändert und bei welchen Spannungen eine optimale Ausbeute an elektrischer Leistung zu erwarten ist.<br>
 
   
 
----
 
----
Line 20: Line 19:
   
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
 
> Neues Material ermöglicht ultradünne Solarzellen<br>
 
> Zwei TU-Forscher im Direktorium der Jungen ÖAW-Kurie<br>
 
> Zwei TU-Forscher im Direktorium der Jungen ÖAW-Kurie<br>
 
> Neue Theorie ermöglicht Blick ins Innere der Erde<br>
 
> Neue Theorie ermöglicht Blick ins Innere der Erde<br>

Revision as of 11:39, 8 October 2014

Logo Institute for Theoretical Physics


"Cavity Protection Effect" macht Quanteninformation langlebig

Hybridsysteme aus Mikrowellenresonatoren und Atom-Spins in Diamant gelten als Hoffnungsträger für zukünftige Quantentechnologien. Durch einen neuartigen Trick gelang es Forschern an der TU Wien, die Speicherdauer in diesem System deutlich zu verbessern.

Quantensystem.jpg

Das an der TU Wien verwendete Quantensystem: In der Mitte sitzt ein schwarzer Diamant mit Stickstoffatomen, sie koppeln an das Licht eines Mikrowellenresonators.

Team.jpg

Das Team: Jörg Schmiedmayer, Johannes Majer, Stefan Putz, Dmitry Krimer und Stefan Rotter (v.l.n.r)

Die Elektronik in unseren Computern kennt nur zwei Zustände: entweder null oder eins. Quantensysteme hingegen können beliebige Überlagerungen von Zuständen annehmen – also null und eins gleichzeitig. Man hofft, basierend darauf in Zukunft superschnelle Quantencomputer bauen zu können, doch bis dahin sind noch schwierige technologische Probleme zu lösen. Insbesondere hat man damit zu kämpfen, dass gespeicherte Quantenzustände durch Wechselwirkungen mit der Umgebung extrem leicht zerstört werden. An der TU Wien ist es nun gelungen, einen speziellen Schutzeffekt zu nutzen, um die Stabilität eines besonders vielversprechenden Quantensystems deutlich zu erhöhen.




Mehr dazu auf unserer News-Seite sowie weitere stories;
> Neues Material ermöglicht ultradünne Solarzellen
> Zwei TU-Forscher im Direktorium der Jungen ÖAW-Kurie
> Neue Theorie ermöglicht Blick ins Innere der Erde
> Der Computer kann auch nicht alles
> Laserphysik auf den Kopf gestellt
> Mit Neutronen auf der Suche nach der Dunklen Energie
> Teilchenmuster, erzeugt durch Oberflächenladung
> Wenn das Licht im Verkehrsstau steckt
> Kochrezept für ein Universum
> Award of Excellence an Dominik Steineder
> Logik und Teilchen - neues Doktoratskolleg
> Videotipp: Phasenübergänge, visualisiert am Computer
> OePG-Studierendenpreis an Max Riegler
> Unendlich ist ungefähr zwei
> Steuerbare Zufallslaser
> Ehrenmedaille für Prof. Maria Ebel
> Standing Ovations für den TU-Chor
> Möchten Sie Ihr schwarzes Loch mit Milch?
> Stefan Nagele - Promotion Sub Auspiciis
> Zwischen Physik und Chemie
> Quanteneffekte in Super-Zeitlupe
> 400.000 Euro für Schwarze Löcher + das holograph. Prinzip
> Gefrorenes Chaos
> Ultrakurze Laserpulse kontrollieren chemische Prozesse
> Schwingende Saiten zwischen zwei Buchdeckeln
> Die schnellste Stoppuhr der Welt - bald am CERN?
> Der Molekül-Baukasten; Strukturen, die sich selbst
> Nano-Hillocks: Wenn statt Löchern Berge wachsen
> DACAM - neues Center für atomistische Simulationen in Wien


Das Institut für Theoretische Physik trauert um sein früheres Mitglied,

Adam.jpg

wiss. Oberrat Dipl.-Ing. Dr. Gerhard ADAM
(8.12.1932 - 30.12.2012)

Nachruf


Research

The research program at our institute is characterized by a remarkable diversity covering a broad spectrum of topics ranging from high-energy physics and quantum field theory to atomic and condensed matter physics. As a focus area, non-linear dynamics of complex systems including aspects of quantum cryptography and quantum information plays an important role. Many of the research topics make use of and belong to the subdiscipline "computational physics".

The breadth of activities at our institute provides advanced students as well as young researchers with the opportunity to be exposed to a multitude of state-of the art research directions and to receive a broad-based academic training.

Access to query mask of the publication database of the Vienna University of Technology. Direct access to the most recent publications.

Teaching

Teaching theoretical physics to young colleagues is an important part of our activities. Physics nowadays is a very wide field of knowledge, which progresses with ever increasing pace. We are aware that teaching must be directed towards students specializing in experimental as well as in theoretical physics, and we are committed to Humboldt’s program of teaching science through practicing science.

Access to query mask of the teaching database of the Vienna University of Technology. Direct access to all courses offered by our institute.

Talks

Information on physics talks in Vienna can be found in the Calendar of Physics Talks.

Contact

Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstrasse 8-10/136
Tower B (yellow), 10th floor
A-1040 Wien, AUSTRIA
TEL +43 1 58801x13601, x13602 (secretariat)
FAX +43 1 5880113699
e-mail heike.hoeller (at) tuwien.ac.at