Institute for Theoretical Physics

Line 3: Line 3:
 
----
 
----
   
  +
<h1>Den Quanten beim Springen zusehen</h1>
<h1>Leuchtender Zufall</h1>
 
  +
Die bisher genauste zeitliche Vermessung von Quantensprüngen gelang in einem Forschungsprojekt von TU Wien und Max-Planck-Institut für Quantenoptik in Garching.<br>
 
Es galt als kaum erreichbares Ziel in der Laserforschung: Gebündeltes Licht im Terahertz-Bereich, das aus vielen verschiedenen Wellenlängen besteht. An der TU Wien gelang nun eine erste Umsetzung mit einem überraschenden Trick.<br>
 
   
[[image: Leuchtender-Zufall_Personen.JPG|right|300px]]<br>
+
[[image: Helium-Ion.jpg|right|300px]]<br>
  +
Ein kurzer Laserpuls ionisiert ein Helium-Atom und kann den Zustand des verbleibenden Elektrons verändern. <br>
Karl Unterrainer, Sebastian Schönhuber, Michael Krall und Stefan Rotter (v.l.n.r.) <br>
 
   
 
[[image: Nagele-JB-Pazourek.jpg|right|300px]]<br>
Terahertzwellen sind zwar schwer herzustellen, aber sie sind äußerst nützlich. Man kann sie zum Beispiel für chemische Sensoren verwenden, die ganz bestimmte Stoffe detektieren. Dafür müssen sie allerdings zwei wichtige Anforderungen erfüllen: Erstens muss der Terahertz-Lichtstrahl eng gebündelt sein, damit man ihn gezielt an den gewünschten Ort lenken kann, und zweitens darf er nicht wie gewöhnliches Laserlicht bloß eine einzelne Wellenlänge aufweisen, sondern sollte aus vielen verschiedenen Wellenlängen zusammengesetzt sein. Beides gleichzeitig zu erreichen war bisher kaum möglich. An der TU Wien gelang es nun mit einem ungewöhnlichen Trick erstmals einen gebündelten Terahertz-Laser mit Breitband-Spektrum herzustellen: Durch zufällig angeordnete Löcher im aktiven Lasermedium.<br>
 
  +
Stefan Nagele, Joachim Burgdörfer und Renate Pazourek <br>
   
  +
Ganz plötzlich können Quantenteilchen ihren Zustand ändern, man spricht dann oft von „Quantensprüngen“. So können Atome zum Beispiel ein Lichtteilchen absorbieren und dadurch in einen Zustand mit höherer Energie wechseln. Meistens geht man davon aus, dass solche Vorgänge ganz abrupt ablaufen, von einem Augenblick auf den anderen. Mit neuen Methoden, die an der TU Wien maßgeblich mitentwickelt wurden, gelingt es nun allerdings, die zeitliche Struktur dieser extrem schnellen Übergänge zu studieren. Ähnlich wie das Elektronenmikroskop erlaubt, einen Blick auf winzige räumliche Strukturen zu werfen, die für das Auge unsichtbar sind, kann man nun mit Hilfe ultrakurzer Laserpulse zeitliche Strukturen analysieren, die uns bisher verborgen waren. <br>
[[image: Zufallslaser_Mikro-Löcher.JPG|right|300px]]<br>
 
Zufallslaser mit Mikro-Löchern <br>
 
 
[[image: Zufallslaser.JPG|right|300px]]<br>
 
Der Zufallslaser strahlt nicht in alle Richtungen, sondern gezielt nach oben. <br>
 
   
   
Line 23: Line 19:
   
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
 
Mehr dazu auf unserer [[News|News]]-Seite sowie weitere stories;<br>
 
> Leuchtender Zufall<br>
 
> Künstliche 2D-Kristalle auf Knopfdruck verändern<br>
 
> Künstliche 2D-Kristalle auf Knopfdruck verändern<br>
 
> „Künstliches Atom“ in Graphen-Schicht<br>
 
> „Künstliches Atom“ in Graphen-Schicht<br>

Revision as of 12:57, 9 November 2016

Logo Institute for Theoretical Physics


Den Quanten beim Springen zusehen

Die bisher genauste zeitliche Vermessung von Quantensprüngen gelang in einem Forschungsprojekt von TU Wien und Max-Planck-Institut für Quantenoptik in Garching.

Helium-Ion.jpg


Ein kurzer Laserpuls ionisiert ein Helium-Atom und kann den Zustand des verbleibenden Elektrons verändern.

Nagele-JB-Pazourek.jpg


Stefan Nagele, Joachim Burgdörfer und Renate Pazourek

Ganz plötzlich können Quantenteilchen ihren Zustand ändern, man spricht dann oft von „Quantensprüngen“. So können Atome zum Beispiel ein Lichtteilchen absorbieren und dadurch in einen Zustand mit höherer Energie wechseln. Meistens geht man davon aus, dass solche Vorgänge ganz abrupt ablaufen, von einem Augenblick auf den anderen. Mit neuen Methoden, die an der TU Wien maßgeblich mitentwickelt wurden, gelingt es nun allerdings, die zeitliche Struktur dieser extrem schnellen Übergänge zu studieren. Ähnlich wie das Elektronenmikroskop erlaubt, einen Blick auf winzige räumliche Strukturen zu werfen, die für das Auge unsichtbar sind, kann man nun mit Hilfe ultrakurzer Laserpulse zeitliche Strukturen analysieren, die uns bisher verborgen waren.




Mehr dazu auf unserer News-Seite sowie weitere stories;
> Leuchtender Zufall
> Künstliche 2D-Kristalle auf Knopfdruck verändern
> „Künstliches Atom“ in Graphen-Schicht
> How General Is Holography? Flat Space and Higher-Spin Holography in 2+1 Dimensions
> Die Ausnahme und ihre Regeln
> Zwei neue Doktoratskollegs an der TU Wien
> Der Quanten-Strom im Graphen
> Goldenes Diplom und Kategoriesieg für TU Chor
> Bunt ist alle Theorie
> Physik-Konferenz in Wien: Statistik zwischen Ost und West
> Monstergruppen berechnen den Mondschein
> Das Schalter-Molekül
> Poster Award für Alexander Haber und seine Supraflüssigkeiten
> Ein Teilchen aus reiner Kernkraft
> Poster Award für Alexander Haber und seine Supraflüssigkeiten
> Hundert Jahre allgemeine Relativitätstheorie
> Neues Materialdesign ermöglicht ungestörte Lichtwellen
> Ist unser Universum ein Hologramm?
> Gipfeltreffen der Teilchenphysik in Wien
> Ausgezeichneter TU Chor
> Ernest Rutherford Fellowship für Andreas Schmitt
> Fertigstellung der Sanierungs- und Adaptierungsarbeiten im Freihaus
> Im Faxraum ist alles in Ordnung
> Hochdotierte Förderung für Materialforschung
> Doktortitel für das Erklären der Welt
> Ein Swimmingpool im Seminarraum - neuer Boden im SEM-136
> Feuer aus!
> Georg Kastlunger erhält das Stipendium der Monatshefte für Chemie 2014
> Elektronen-Wettrennen: Die kürzeste Sprintstrecke der Welt
> Jakob Salzer erhält ÖPG-Studierendenpreis
> Max Riegler erhält DOC Stipendium
> Teilchen, Wellen und Ameisen
> Laserpulse und Materie: IMPRS-APS-Meeting in Wien
> Gewinnen durch Verlust
> Laserpuls macht Glas zum Metall
> Eine Flüssigkeit, die nicht gefriert
> "Cavity Protection Effect" macht Quanteninformation langlebig
> Neues Material ermöglicht ultradünne Solarzellen
> Zwei TU-Forscher im Direktorium der Jungen ÖAW-Kurie
> Neue Theorie ermöglicht Blick ins Innere der Erde
> Der Computer kann auch nicht alles
> Laserphysik auf den Kopf gestellt
> Mit Neutronen auf der Suche nach der Dunklen Energie
> Teilchenmuster, erzeugt durch Oberflächenladung
> Wenn das Licht im Verkehrsstau steckt
> Kochrezept für ein Universum
> Award of Excellence an Dominik Steineder
> Logik und Teilchen - neues Doktoratskolleg
> Videotipp: Phasenübergänge, visualisiert am Computer
> OePG-Studierendenpreis an Max Riegler
> Unendlich ist ungefähr zwei
> Steuerbare Zufallslaser
> Ehrenmedaille für Prof. Maria Ebel
> Standing Ovations für den TU-Chor
> Möchten Sie Ihr schwarzes Loch mit Milch?
> Stefan Nagele - Promotion Sub Auspiciis
> Zwischen Physik und Chemie
> Quanteneffekte in Super-Zeitlupe
> 400.000 Euro für Schwarze Löcher + das holograph. Prinzip
> Gefrorenes Chaos
> Ultrakurze Laserpulse kontrollieren chemische Prozesse
> Schwingende Saiten zwischen zwei Buchdeckeln
> Die schnellste Stoppuhr der Welt - bald am CERN?
> Der Molekül-Baukasten; Strukturen, die sich selbst
> Nano-Hillocks: Wenn statt Löchern Berge wachsen
> DACAM - neues Center für atomistische Simulationen in Wien


Das Institut für Theoretische Physik trauert um sein früheres Mitglied,

Adam.jpg

wiss. Oberrat Dipl.-Ing. Dr. Gerhard ADAM
(8.12.1932 - 30.12.2012)

Nachruf


Research

The research program at our institute is characterized by a remarkable diversity covering a broad spectrum of topics ranging from high-energy physics and quantum field theory to atomic and condensed matter physics. As a focus area, non-linear dynamics of complex systems including aspects of quantum cryptography and quantum information plays an important role. Many of the research topics make use of and belong to the subdiscipline "computational physics".

The breadth of activities at our institute provides advanced students as well as young researchers with the opportunity to be exposed to a multitude of state-of the art research directions and to receive a broad-based academic training.

Access to query mask of the publication database of the Vienna University of Technology. Direct access to the most recent publications.

Teaching

Teaching theoretical physics to young colleagues is an important part of our activities. Physics nowadays is a very wide field of knowledge, which progresses with ever increasing pace. We are aware that teaching must be directed towards students specializing in experimental as well as in theoretical physics, and we are committed to Humboldt’s program of teaching science through practicing science.

Access to query mask of the teaching database of the Vienna University of Technology. Direct access to all courses offered by our institute.

Talks

Information on physics talks in Vienna can be found in the Calendar of Physics Talks.

Contact

Institute for Theoretical Physics
Vienna University of Technology
Wiedner Hauptstrasse 8-10/136
Tower B (yellow), 10th floor
A-1040 Wien, AUSTRIA
TEL +43 1 58801x13601, x13602 (secretariat)
FAX +43 1 5880113699
e-mail heike.hoeller (at) tuwien.ac.at